To:	SHARP	SPEC No. LCP-2619055A
		FILE No.
		ISSUE Oct.16.2019
	SHARE CORFORATION	PAGE Pages 33
	Technical Literature	DEVELOPMENT DIVISION BUSINESS UNIT 6 BUSINRSS DIVISON 2 DISPLAY DEVICE COMPANY SHARP CORPORATION
	DEVICE Technical literature IFT LCD Module Model No.	for
	LS055B3SX04	aptor
ore pisplay	Draft Version	EVELOPMENT DIVISION JSINESS UNIT 6 JSINRSS DIVISON 2 SPLAY DEVICE COMPANY HARP CORPORATION

	RECORDS (DF REVISION		DOC. First Issue Model No.	Oct. 16. 2019 LS055B3SX04
DATE	REF.PAGE PARAGRAPH DRAWING No.	REVISED NO.		SUMMARY	LCP-2019055A
Dct.16.2019	—	А	1 st Issue		
					0
					C
					1.
					2
					0
					2
				10,	
				<u>.</u>	
			$-\theta_{l}$		
			6		
			9		
			*		
		0			
		X			
	S				
S C					
)					

SPEC No. LCP-2619055A MODEL No.

LS055B3SX04

1

NOTICE

o These specification sheets are the proprietary product of SHARP CORPORATION (SHARP) and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.

o The application examples in these specification sheets are provided to explain the representative applications of the device and are not intended to guarantee any industrial property right or other rights or license you to use them. SHARP assumes no responsibility for any problems related to any industrial property right of a third party resulting from the use of the device.

• The device listed in these specification sheets was designed and manufactured for use in HMD.

o In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.

• Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.

• SHARP assumes no responsibility for any damage resulting from the use of the device which does not comply with the instructions and the precautions specified in these specification sheets.

• Contact and consult with a SHARP sales representative for any questions about this device.

[For handling and system design]

(1) Do not scratch the surface of the polarizer film as it is easily damaged.

(2) If the cleaning of the surface of the LCD panel is necessary, wipe it swiftly with cotton or other soft cloth. Do not use organic solvent as it damages polarizer.

(3) Water droplets on polarizer must be wiped off immediately as they may cause color changes, or other defects if remained for a long time.

(4) Since this LCD panel is made of glass, dropping the module or banging it against hard objects may cause cracks or fragmentation.

(5) Certain materials such as epoxy resin (amine's hardener) or silicone adhesive agent (de-alcohol or de-oxym) emits gas to which polarizer reacts (color change). Check carefully that gas from materials used in system housing or packaging do not hart polarizer.

(6) Liquid crystal material will freeze below specified storage temperature range and it will not get back to normal quality even after temperature comes back within specified temperature range. Liquid crystal material will become isotropic above specified temperature range and may not get back to normal quality. Keep the LCD module always within specified temperature range.

(7) Do not expose LCD module to the direct sunlight or to strong ultraviolet light for long time.

(8) If the LCD driver IC (COG) is exposed to light, normal operation may be impeded. It is necessary to design so that the light is shut off when the LCD module is mounted.

(9) Do not disassemble the LCD module as it may cause permanent damage.

(10) As this LCD module contains components sensitive to electrostatic discharge, be sure to follow the instructions in below.

1. Operators

Operators must wear anti-static wears to prevent electrostatic charge up to and discharge from human body.

2. Equipment and containers

Process equipment such as conveyer, soldering iron, working bench and containers may possibly generate electrostatic charge up and discharge. Equipment must be grounded through 100Mohms resistance. Use ion blower.

3. Floor

Floor is an important part to leak static electricity which is generated from human body or equipment. There is a possibility that the static electricity is charged to them without leakage in case of insulating floor, so the counter measure (electrostatic earth: $1 \times 10^8 \Omega$) should be made.

4. Humidity

Proper humidity of working room may reduce the risk of electrostatic charge up and discharge. Humidity should be kept over 50% all the time.

5. Transportation/storage

Storage materials must be anti-static to prevent causing electrostatic discharge.

6. Others

Protective film is attached on the surface of LCD panel to prevent scratches or other damages. When removing this protective film, remove it slowly under proper anti-ESD control such as ion blower.

(11) Hold LCD very carefully when placing LCD module into the system housing. Do not apply excessive stress or pressure to LCD module. Do not to use chloroprene rubber as it may affect on the reliability of the electrical interconnection.

(12) Do not hold or touch LCD panel to flex interconnection area as it may be damaged.

(13) As the binding material between LCD panel and flex connector mentioned in 12) contains an organic material, any type of organic solvents are not allowed to be used. Direct contact by fingers is also prohibited.

(14) When carrying the LCD module, place it on the tray to protect from mechanical damage. It is recommended to use the conductive trays to protect the CMOS components from electrostatic discharge. When holding the module, hold the Plastic Frame of LCD module so that the panel, COG and other electric parts are not damaged.

(15) Do not touch the COG's patterning area. Otherwise the circuit may be damaged.

(16) Do not touch LSI chips as it may cause a trouble in the inner lead connection.

(17) Place a protective cover on the LCD module to protect the glass panel from mechanical damages.

(18) LCD panel is susceptible to mechanical stress and even the slightest stress will cause a color change in background. So make sure the LCD panel is placed on flat plane without any continuous twisting, bending or pushing stress.

(19) Protective film is placed onto the surface of LCD panel when it is shipped from factory. Make sure to peel it off before assembling the LCD module into the system. Be very careful not to damage LCD module by electrostatic discharge when peeling off this protective film. Ion blower and ground strap are recommended.

(20) Make sure the mechanical design of the system in which the LCD module will be assembled matches specified viewing angle of this LCD module.

(21) This LCD module does not contain nor use any ODS (1,1,1-Trichloroethane, CCL4) in all materials used, in all production processes.

a. Don't keeping under the direct sunlight.

b. Keeping in the tray under the dark place.

(4) Do not operate or store the LCD module under outside of specified environmental conditions.

(5) Be sure to prevent light striking the chip surface.

[Other Notice]

(1) Do not operate or store the LCD module under outside of specified environmental conditions.

(2) As electrical impedance of power supply lines (VDDI-GND) are low when LCD module is working, place the de-coupling capacitor nearby LCD module as close as possible.

(3) Reset signal must be sent after power on to initialize LSI. LSI does not function properly until initialize it by reset signal.

(4) Generally, at power on, in order not to apply DC charge directly to LCD panel, supply logic voltage first and initialize LSI logic function including polarity alternation. Then supply voltage for LCD bias. At power off, in order not to apply DC charge directly to LCD panel, execute Power OFF sequence and Discharge command.

(5) Don't touch to FPC surface, exposed IC chip, electric parts and other parts, to any electric, metallic materials.

(6) No bromide specific fire-retardant material is used in this module.

(7) Do not display still picture on the display over 2 hours as this will damage the liquid crystal.

(8) U/V glue (Liquid OCA) should not be attached on upper polarizer edge, when customer laminate cover glass and touch panel and EyeCup on LCD.

[Precautions for Discarding Liquid Crystal Modules]

COG: After removing the LSI from the liquid crystal panel, dispose of it in a similar way to circuit boards from electronic devices.

LCD panel: Dispose of as glass waste. This LCD module contains no harmful substances. The liquid crystal panel contains no dangerous or harmful substances. The liquid crystal panel only contains an extremely small amount of liquid crystal (approx.100mg) and therefore it will not leak even if the panel should break. Its median lethal dose (LD50) is greater than 2,000 mg/kg and a mutagenic (Aims test: negative) material is employed.

FPC: Dispose of as similar way to circuit board from electric device.

z di sel ai

SPEC No) .	
LCP	-2619	055A

1. Application

This data sheet is to introduce the specification of active matrix 16,777,216 color LCD module.

Main color LCD module is controlled by Driver IC (Synaptics R63455).

If any problem occurs concerning the items not stated in this specification, it must be solved sincerely by both parties after deliberation.

As to basic specification of driver IC refer to the IC specification and handbook.

2. Construction and Outline

This module is a color transmissive, high contrast, wide viewing angle and active matrix LCD module. Construction: LCD panel, Driver (COG), FPC with electric components, LEDs, prism sheet, diffuser, light guide, reflector and metal frame (+ plastic frame) to fix them mechanically.

3. Mechanical Specification

ItemSpecificationsUnitScreen size (Diagonal)5.46inchmmActive area63.072(H) x 123.5817(V)mmPixel format1920(H) x 3664(V)PixelPixel format1 Pixel = R+G+B dots-Pixel pitch10.95(H) x 32.85(V)µmPixel configurationB G B Vertical Stripes-	
Screen size (Diagonal) 5.46inch mm Active area 63.072(H) x 123.5817(V) mm Pixel format 1920(H) x 3664(V) Pixel Pixel format 1 Pixel = R+G+B dots - Pixel pitch 10.95(H) x 32.85(V) µm Pixel configuration B G B Vertical Stripes -	Remarks
Active area 63.072(H) x 123.5817(V) mm Pixel format 1920(H) x 3664(V) Pixel 1 Pixel = R+G+B dots - - Pixel pitch 10.95(H) x 32.85(V) µm Pixel configuration B G B Vertical Stripes -	
Pixel format 1920(H) x 3664(V) Pixel 1 Pixel =R+G+B dots - Pixel pitch 10.95(H) x 32.85(V) μm Pixel configuration B G B Vertical Stripes -	
Pixel rotifiat 1 Pixel = R+G+B dots - Pixel pitch 10.95(H) x 32.85(V) μm Pixel configuration B G B Vertical Stripes -	
Pixel pitch 10.95(H) x 32.85(V) μm Pixel configuration B G B Vertical Stripes -	
Pixel configuration B G B Vertical Strings	
The comparation the stripes	
Display mode Normally Black -	
Number of colors16,777,216Colors	24 bits
Outline dimensions 66.3(W) x 135.98(H) x 1.65(D) mm	Note 3-1
Mass G TBD g	

Note 3-1) The above-mentioned table indicates module sizes without some projections and FPC

SPEC No. LCP-2619055A MODEL NO. LS055B3SX04

PAGE

Pin N	lo	Signal	Function	I / O
1		GND	GND=0V	_
2 GND			GND=0V	-
3		TE Tearing effect output		
	4	BLU PWM 2	Control signal for LED backlight (refer to next page)	0
5		PNSLV	Selects the master port ("H"=port B, "L"=port A)	I
	6	GND	GND=0V	- 0
7		GND	GND=0V	
	8	RESET	Reset pin (Low active)	I
9		Data 2P B	Mipi data2 positive signal of MIPI Port B	
	10	GND	GND=0V	_
11		Data 2N B	Mipi data2 negative signal of MIPI Port B	I
	12	GND	GND=0V	-
13		GND	GND=0V	-
	14	Data 1P B	Mipi data1 positive signal of MIPI Port B	I
15	-	CLK P B	Mipi clock positive signal of MIPI Port B	I
-	16	Data 1N B	Mipi data1 negative signal of MIPI Port B	I
17	-	CLK N B	Mipi clock negative signal of MIPI Port B	I
	18	GND	GND=0V	
19		GND	GND=0V	_
	20	Data OP B	Mini data0 positive signal of MIPI Port B	I/O
21		Data 3P B	Mini data3 positive signal of MIPI Port B	I / C
	22	Data 0N_B	Mini data0 negative signal of MIPI Port B	1/0
23		Data 3N B	Mini data3 negative signal of MIPI Port B	I / C
		GND		-
25		GND		_
	26	VSN	Power supply to the analog circuit (-5.7V)	T
77			Power supply to the logic circuit (1.8V)	T
.,	28	VSN	Power supply to the apalog circuit (-5 7V)	T
9			Power supply to the logic circuit (1.8V)	Ī
	30	GND	GND=0V	-
31	50		Power supply to the logic circuit (1.8V)	T
-	32	VSP	Power supply to the analog circuit (5.7V)	Ī
33		GND	GND=0V	-
	34	VSP	Power supply to the analog circuit (5.71/)	T
35	6	Data 3N A	Mini data3 negative signal of MIPI Port A	T
	36	GND	GND=0V	
37	50		Mini data3 nositive signal of MIDI Port A	т
	38	Data ON A	Mini data0 pegative signal of MIPI Port A	1/0
30	50			
	40			T/O
<u>4</u> 1	-10		Mini clock pegative signal of MIDI Port A	т, О т
-71	12			
12	42		Mini clock positive signal of MIDI Port A	
-1-3		ULK P_A	MIPI CICK POSILIVE SIGNAL OF MIPI PORTA	1

511	ARP	SPEC No. LCP-2619055A	MODEL No. LS055B3SX04	PAGE	7
44	Data 1N_A	Mipi data1 negative signa	l of MIPI Port A	I I	
45	GND	GND=0V	-	1	
46	Data 1P_A	Mipi data1 positive signa	l of MIPI Port A	I	1
47	Data 2N_A	Mipi data2 negative signa	al of MIPI Port A	I	
48	GND	GND=0V		-	
49	Data 2P_A	Mipi data2 positive signal	l of MIPI Port A	Ι	C
50	BLU_PWM_1	Control signal for LED backlight	1 (refer to next page)	0	
51	GND	GND=0V			Ν.
53	GND	GND=0V		<u> </u>	
53	LED-C2	LED cathode	e 2	I	
54	LED-C1	LED cathode	e 1		
55	LED-A2	LED-anode	2	J I	
56	LED-A1	LED-anode	1	I	
57	LED-C4	LED cathode	24	I	
58	LED-C3	LED cathode		I	
59	LED-A4	LED-anode	4	I	
60	LED-A3	I ED-anode	3	Т	
<u>Connector</u>	AXE660124(Panas	onic)]
<u>Connector</u>	AXE660124(Panas	onic)			1
Connector	AXE660124(Panas	onic)			1

SPEC No. LCP-2619055A MODEL No. LS055B3SX04

8

6. Absolute Maximum Ratings

Table3					GND=0V
Parameter	Symbol	Conditions	Rated Value	Unit	Remarks
Driver IC (Positive Analog) Power Supply Voltage	VSP	Ta=+25°C	-0.3 to +6.5	V	Note6-1
Driver IC (Negative Analog) Power Supply Voltage	VSN	Ta=+25°C	+0.3 to -6.5	V	Note6-1
Driver IC (Digital) Power Supply Voltage	VDDIO	Ta=+25°C	-0.3 to +2.3	V	Note6-1
Temperature for storage	T _{stg}	-	-30 to +70	°C	Note6-2
Temperature for operation	T _{opr}	-	0 to +55	°C	Note6-2
LED Input electric current	ILED	Ta=+25°C	0 to 100 (Duty 10%)	mA	Note6-3

Note6-1) Voltage applied to GND pins. GND pin conditions are based on all the same voltage (0V). Always connect all GND externally and use at the same voltage.

Note6-2) Humidity: 95%RH Max.(at T α ≤40°C). Maximum wet-bulb temperature is less than 39°C (at T α >40°C). Condensation of dew must be avoided.

Note6-3) Ambient temperature and the maximum input are fulfilling the following operating conditions.

7. Electrical Specifications

7-1. TFT-LCD Panel Driving Section

Table4

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remarks
Driver IC(Digital) Power Supply Voltage	VDDIO	1.7	1.8	1.9	V	Note7-1
Driver IC(Positive Analog) Power Supply Voltage	VSP	5.6	5.7	5.8	V	Note7-1
Driver IC(Negative Analog) Power Supply Voltage	VSN	-5.8	-5.7	-5.6	V	Note7-1
Input voltage (Low)	VIL	0	-	0.3 VDDIO	V	Note7-2
Input voltage (High)	VIH	0.7 VDDIO	-	VDDIO	V	Note7-2
Input current (Low)	lıL	-10	-	- 4	μA	
Input current (High)	Ін	-	-	10	μA	
Output voltage (Low)	Vol	0	-	0.2 VDDIO	v	IoL=+0.1mA
Output voltage (High)	Vон	0.8 VDDIO	-	VDDIO	V	Іон=-0.1mA
	Ivddio	-	-	TBD	mA	
Current consumption	IVSP	-		TBD	mA	Note7-3
	Ivsn	TBD		-	mA	
Power consumption		- (495	TBD	mW	Note7-4

Note7-1) Include Ripple Noise

Note7-2) Applied overshoot

Note7-3) 72Hz / D-phy 8lane / with DSC / Worst pattern

Note7-4) 72Hz / D-phy 8lane / with DSC / White pattern

7-2. Back Light Driving Section

	Table5	A					Ta=+25°C, GND=0V
	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remarks
	LED Voltage	V _{LED}	-	6.08	-	V	per unit
	LED Current	I _{LED}	-	46.8	-	mA	Duty 10%
	Power Consumption	W _{LED}	-	455	-	mW	100cd/m2
	LED Quantity			16		pcs	
	0						
\mathbb{N}	3						

8. Timing characteristics of input signals

8-1. MIPI DC/AC Characteristics

<DC characteristics>

MIPI DSI characteristics

Table6

	Item	Symbol	Unit	Test Condition	Minimum	Typical	Maximum
	Differential input high threshold	VIDTH	mV	IOVCC = DPHYVCC = 1.65V - 1.95V		-	70
	Differential input low threshold	VIDTL	mV	IOVCC = DPHYVCC = 1.65V ~ 1.95V	-70	A	0 -
	Single-ended input low voltage	VILHS	mV	IOVCC = DPHYVCC = 1.65V - 1.95V	-40	5	
HS-RX	Single-ended input high voltage	VIHHS	mV	IOVCC = DPHYVCC = 1.65V ~ 1.95V	TO,	-	460
	Common-mode voltage HS receive mode ¹	VCMRX(DC)	mV	IOVCC = DPHYVCC = 1.65V ~ 1.95V	0 70	-	330
	Differential input impedance ²	ZID	Ω	IOVCC = DPHYVCC = 1.65V - 1.95V	-	100	-
	Logic 0 input voltage not in ULP State	VIL	mV	IOVCC = DPH/VCC = 1.65V - 1.95V	-50		550
LP-RX	Logic 1 input voltage	VIH	mV	IOVCC = DPHYVCC =	880	-	1350
	I/O leakage current	ILEAK	μA	Vin = -50 mV - 1350 mV	-10	1.00	10
	Thevenin output low level	VOL	mVC	IOVCC = DPHYVCC = 1.65V - 1.95V	-50		50
LP-TX	Thevenin output high level	VOH	V	IOVCC = DPHYVCC = 1.65V ~ 1.95V	1.1	1.2	1.3
	Output impedance of LP transmitter ²	ZOLP	Ω	IOVCC = DPHYVCC = 1.65V - 1.95V	110	-	-
CD-RX	Logic 0 contention threshold	VILCD	mV	IOVCC = DPHYVCC = 1.65V ~ 1.95V	-	-	200
	Logic 1 contention threshold	VIHCD	mV	IOVCC = DPHYVCC = 1.65V - 1.95V	450	-	н

1. VCMRX (DC) = (VDP+VDN)/2

"OL

2. Excluding COG resistance (contact resistance and indium tin oxide (ITO) wiring resistance)

SPEC No.

LCP-2619055A

MODEL No.

LS055B3SX04

PAGE

12

<AC Characteristics>

MIPI DSI HS-RX Clock and Data-Clock Specifications

Table7

Item	Symbol	Unit	Test Condition	Minimum	Typical	Maximum	Footnote
DSICLK frequency	fDSICLK	MHz	IOVCC = DPHYVCC = 1.65 ~ 1.95V	250	-	750	1
DSICLK cycle time	tCLKP	ns	$IOVCC = DPHYVCC = 1.65 \sim 1.95V$	1.33	-+	4	1
DSI data transfer rate	tDSIR	Mbps	IOVCC = DPHYVCC = 1.65 ~ 1.95V	500		1500	10
	100	U	IOVCC = DPHYVCC = 1.65 ~ 1.95V	0.15		4	1,3
Data to clock setup	INCTUR	ns DSI transfer rat	DSI transfer rate ≤ 1000 Mbps	0.15	4	E)	1, 2, 3
time	TSEIUP	U	IOVCC = DPHYVCC = 1.65 ~ 1.95V	0.2	- 1	2-	1,3
		ns	DSI transfer rate > 1000 Mbps	0.13	0	-	1, 2, 3
		U	IOVCC = DPHYVCC = 1.65 ~ 1.95V	0.15	F	-	1,3
Clock to data hold	alloi D	tHOLD ns DSI transfer rate ≤ 1000 Mbps UI $10VCC = DPHYVCC = 1.65 - 1.95V$	0.15	-	-	1, 2, 3	
time	THOLD		IOVCC = DPHYVCC = 1.65 - 1.95V	0.2	1 C		1,3
		ns	DSI transfer rate > 1000 Mbps	. 0.13		-	1, 2, 3

1 Minimum 110 mV/-110 mV HS differential swing is required for display data transfer.

2. tSETUP/tHOLD times are measured without HS-TX litter.

3. Minimum tSETUP/tHOLD Time is 0.15 UI or 0.20 UI. This value may change according to the DSI transfer rate.

Fig. 4

SPEC No.

LCP-2619055A

MODEL No.

LS055B3SX04

13

MIPI DSI LP-RX/TX Clock and Data-Clock Specifications

Table8

Item	Symbol	Unit	Test Condition	Minimum	Typical	Maximum
Time to drive LP-00 to prepare for HS transmission	THS-PREPARE	1.	IOYCC = DPHYYOC = 1.65 ~ 1.95V	40 ns + 4 • UI	8	85 ns + 6 • UI
THE-PREPARE + time to drive HS- 0 before the sync sequence	THS-PREPARE + Ths-zero	-	10VCC = DPHYVCC = 1.65 ~ 1.95V	145ns + 10 • UI	191	12
Time to drive flipped differential state after last payload data bit of a HS transmission burst ^{1, 2}	Theitrail	÷	IOVCC = DPHYVOC = 1.65 ~ 1.95V	max (n • 8 • UI, 60 ns + n • 4 • VI)		- e-
Time to drive LP-11 after a HS burst	Тнь-ёхл	ns	IOVCC = DPHYVCC = 1.65 ~ 1.95V	100	_ e	-
Time to drive LP-00 after a tumaround request	Тть до	-	IOVCC = 0PHYVCC = 1.65 ~ 1.95V	4	ומיעוד יי א	15
Time that the new TX waits after the LP-10 state before transmitting the bridge state (LP-00) during a link turnaround	Талацияе	ų.	IOVCC = DPHYVOC = 1.65 ~ 1.95V	1 · TLPTX	ot	2 • TLPTS
Time that the new TX drives the bridge state (LP-00) after accepting control during a link turnaround	Ттанает	-	10VCC = DPHYVCC = 1.65 ~ 1.95V	0	тына	
Length of any low-power state period	Tuex	ns	IOVCC = DPHYVCC = 1.65 ~ 1.95V	50	-	-
Ratio of TLEXIMASTERI/TLEXISLAVE) between the master and slave sides	Ratio Turk	Г	10VCC - DPHYVCC - 1.65 - 1.95V	2/3	3	3/2
Time that the transmitter continues sending HS clock after the last associated data lane has transitioned to LP mode ^a	TOUM-POST	0	IOVCC = DPHYVCC = 1.65 ~ 1.95V	60 ns + 52 UI	e	-
TCLINFREEPARE +time for lead HS- O drive period before starting the clock	TCLK-PREPARE +TCLG-ZERD	ns	10VCC = DPHYVOC = 165~195V	300	+	-
Time that the HS clock is driven prior to any associated data lane beginning the transition from LP to HS mode	TOLKIPINE	O.	IOVCC = DPHYVCC = 165~195V	8	-	-
Time to drive LP-00 to prepare for HS clock transmission	TOLK-PREPARE	ns	10VCC = DPHYVOC = 1.65 ~ 1.95V	38	-	95
Time to drive HS differential state after last payload clock bit of an HS transmission burst	Тецистрац	ns	IOVCC = DPHYVCC = 1.65 ~ 1.95V	60	-	-
Time from the start of THS-TRAIL period to the start Of the LP-11 state ²	Teor	Ξ	IOVCC = DPHYVCC = 1.65 ~ 1.95V	-		105 ns + n • 12 • UI
Length of the low-power TX period when using the DSI-2 clock ^{4, 5}	Tiptxi	UĮ	IOVCC = DPHYVCC = 1.65 - 1.95V	-	1/fTXCLK	-
Length of the low-power TX period when using the internal OSC clock ^{4, 5}	Tupna	ns-	IOVCC = DPHYVCC = 1.65 ~ 1.95V	-	8/fosc	

1. If a > b then max (a, b) = a, otherwise max (a, b) = b

2. Where n = 1 for forward direction HS mode.

 R63455 works with this specification, although the last part of the internal process remains when the clock lane enters LP-11 and R63455 works without the remaining process if tCLK-POST is more than 512 UI.

 R63455 uses the DSI clock from the host processor if the DSI-2 clock lane is active, and uses the internal oscillator clock if the DSI-2 clock lane is stopped.

5. See section "DSI-2 Control Setting (B6h)" (D-PHY) in this document for more information about the DSITXDIV register function.

Frame rate < B/L Impulse Driving timing (72Hz frame / TBDms scanning driving) >

VBP (including Vsync width)

V active

1H Time

1st frame	(TBDms)	2nd frame(TBDms)			
Gate scan (TBDms)	Response time (TBDms)	BL on (TBDms)	Gate scan (TBDms)	Response time (TBDms)	BL on (TBDms)
PinNo.4/ BLU_PWM_2 PinNo.50/ BLU_PWM_	<u>2</u> 1				
		 Fi	ig. 12		

3

_

_

-

20

3664

2.26

72

Н

Н

us

Hz

-

-

-

-

SHARP	SPEC No.	MODEL NO.	PAGE
	LCP-2619055A	LS055B3SX04	18
9. Power Sequence Below shows timing diagram of power on off	sequence.		

Status	Initial Condition	NVM auto load	Sleep Mode	Sleep Out Sequence	Sleep Mode Off Display On	Sleep In Sequence	Sleep Mode	Power Off

Fig. 13 🔹

<Power supply timing characteristics>

Table11				
ltem	Symbol	Min	Max	Unit
VSP-VSN delay time (10% to 10%)	tPON1	0	_	μs
VSP-VSN delay time (50% to 50%)	tPON2	0	-	μs
System power on to VSP ON time	tsVSP	1	-	ms
VSN-VSP delay time (10% to 10%)	tPOFF1	0	-	μs
VSN-VSP delay time (50% to 50%)	tPOFF2	0	-	μs
VSP OFF to system power OFF time	thVSP	0	_	μs

<Reset timing characteristics>

Table12

Table12				
Item	Symbol	Min	Max	Unit
Reset low-level width1	tRW1	2	-	ms
Reset low-level width2	tRW2	25	-	ms
Reset to MIPI command	tRT1	20	-	ms

SPEC No. LCP-2619055A MODEL No. LS055B3SX04

PAGE

1	0	
L	7	

tep	State	Action/Command	I/	F (Data Ty	/pe)	Comman	Date
1	Initial Condition	RESX = L					
2		Power Supply ON : IOVCC					
3		- Wait ≧1ms					
4		Power Supply ON : VSP					G
5		- Wait ≧0ms				1	
6		Power Supply ON : VSN					
7		- Wait ≧2ms				10	
8		RESX = H				\sim	
9	NVM Auto Load	- Wait ≧20ms			C	X	
10	Sleep Mode On	Manufacture Command Access Protect	DS	Generi	6'h2 -	CMD	8'hB0
11				, Č		P1	8'h00
12		Display Mode	DS	Generi	6'h2	CMD	8'hB7
13				\sim		P1	8'h12
14		Generic pin output setting 2	DS	Generi	6'h2	CMD	8'hB9
15			20			P1	TBD
16			Q			P2	TBD
17		· /a.				P3	TBD
18						P4	TBD
19						P5	TBD
20						P6	TBD
21						P7	TBD
22						P8	TBD
23						P9	TBD
24		. 5				P10	TBD
25						P11	TBD
26						P12	TBD
27						P13	TBD
28						P14	TBD
29						P15	TBD
30		Δ				P16	TBD
31		NVM Load setting	DS	Generi	6'h2	CMD	8'hD
32						P1	8'h00
33		Manufacture Command Access Protect	DS	Generi	6'h2	CMD	8'hB0
34	. 7					P1	8'h03
35	Sleep Mode On	get_compression_mode	DS	DCS	6'h3	CMD	8'h03
36	V					P1	TBD
37 (set_display_on	DS	DCS	6'h0	CMD	8'h29
38		exit_sleep_mode	DS	DCS	6'h0	CMD	8'h11
39	mipi data tranfer	Start mipi data tranfer (including					
40	Sleep Out Sequence	- Wait ≧ 4-Frame data					
	Sleep Mode Off						
41	Display On						

SPEC No.		
LCP-	2619	055A

MODEL No.

LS055B3SX04

PAGE

20

9-2. Power OFF Sequence

Table 14: Recommended Power Off Sequence

		Action/Command	I/F	(Data	туре)	Command	Da
1	Sleep Mode Off	Set_display_off	DSI	DCS	6'h05	CMD	8'h
2		Enter_sleep_mode	DSI	DCS	6'h05	CMD	8'ł
3	mini data tranfer innut	Input mipi dummy display data after "Enter					
5		sleep mode" (including Vsync/Hsync)					
4	Sleep In Sequence	- Wait 3-Frame dummy display data					
5	Sleep Mode On	RESX = L					
6		- Wait ≧25ms					
7		Power Supply OFF : VSN					
8		- Wait ≧0ms			<u> </u>		
9		Power Supply OFF : VSP					
10		- Wait ≧0ms		4	O		
11		Power Supply OFF : IOVCC					
12	Power Off			\bigcirc			
		COL MARS					
		oanels on white					
		Panelson MM					
	. Splan	Panelson					
	oi splay	Panels					
	oisplav S	Panels					
	oisplay	Panels					

SPEC No.

LCP-2619055A

MODEL No. LS055B3SX04 PAGE

21

10. Input Signals, Basic Display Colors and Gray Scale of Each Color

	able15																0: LC	ow le	vel	volta	ige,	1: Hi	gn Ie	evel v	olta	ge
	Colors & Gray												Data Si	signa gnal	ls											
	Scale	Gray	RO	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	B0	B1	B2	B3	B4	B5	B6	B7
		Scale	LSB							MSB	LSB							MSB	LSB							MSB
	Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Green	-	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basi	Cyan	-	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
c Col	Red	-	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
or	Magenta	-	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1)1	1	1	1	1
	Yellow	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	7	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gra	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
iy Sc	仓	\checkmark				```								``	1								/			
ale o	Û	\checkmark					r															1				
f Rec	Brighter	GS253	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>.</u>	Û	GS254	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Darker	GS2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
' Sca	仓	\checkmark				```		($\overline{}$					``									/			
le of	Û	\checkmark				C	57								Þ							1				
Gree	Brighter	GS253	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
'n	Û	GS254	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Green	GS255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	仓	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Gra	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
y Sca	Û	\downarrow \downarrow												``									/			
ale o:		\downarrow					Þ								ŀ							4				
fBlue	Brighter	GS253	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1
	Û	GS254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	Blue	GS255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Each basic color can be displayed in 256 gray scales from 8 bit data signals. According to the combination of total 24 bit data signals, the 16,777,216-color display can be achieved on the screen. screen.

SPEC No.

LCP-2619055A

MODEL No.

LS055B3SX04

PAGE

22

11. Optical Characteristic

Table16 VI	DDI=1.8V, AV	/DD=5.7V, AVE	E=-5.7V, Fram	e Frequency =	72fps, ILED=4	6.8mA@10%[Duty, Ta = 22°C(±3°C)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Contract Datia	CR1	θ=0°	500	650	-	-	Note11-1,2
Contrast Ratio	CR2	θ=30°	100	-	-	-	*1)
Response Time	т	A-0°	-	3.5	4.0	ms	Ta=+25℃ Note11-3
Response fille	ſ	0-0	-	4.8	5.5	ms	Ta=+10°C Note11-3
White Chromaticity	x		0.269	0.294	0.319	-)
White emoniatienty	У		0.289	0.314	0.339	S	
Pod Chromaticity	x		0.610	0.640	0.670	0	
Red Chiomaticity	У	0-0°	0.301	0.331	0.361	<u> </u>	*1)
Groop Chromaticity	x	0-0	0.271	0.301	0.331	-	1)
Green chromaticity	У		0.571	0.601	0.631	-	
Blue Chromaticity	x		0.124	0.154	Q 0.184	-	
bide enronatienty	У		0.027	0.057	0.087	-	
Brightness	L	θ=0°	80	100	120	cd/m²	*1)
Luminance Non-Uniformity	-	θ=0°	-	<u> </u>	30	%	Note11-4
Color Non-Uniformity	-	θ=0°	$\mathcal{O}(\mathcal{O})$	-	TBD	∆u'v'	*1) Note11-5
Color Uniformity	-	θ=0°	<u>)</u>	-	TBD	∆u'v'	*1) Note11-6
Color shift	-	θ=30°	-	-	TBD	∆u'v′	
NTSC Ratio	S	θ=0°	65.6	70.8	-	%	*1)
Gamma	γ	θ=0°	TBD	2.2	TBD	-	*1) *2)
Flicker	G O	θ=0°	-	-	-30	dB	Note11-7
Crosstalk	СТ	θ=0°	-	-	2	%	Note11-8

*1) To be discussed after sample evaluation.

Nore

*2) In range between gray level 200 and 254, 2.20+/-TBD

*3) The measuring method of the optical characteristics is shown by the following figure.

A measurement device is TOPCON luminance meter SR3/ SR-UL1R (Measurement angle 1°).

Note 11-4) Luminance Non-Uniformity

Test conditions: Use instrument inspection conditions and control ambient light to avoid impact to measurement.

Test method: Use spot measurement device, such as Konica Minolta SR3/ SR-UL1R Display Color Analyzer or equivalent, to measure luminance and color at each point (9 points per eye, total 18 points) which is specified in Figure 18.

The display shall be illuminated in W127 image. The average luminance (in cd/m2) of each eye shall be calculated.

Maximum Variation is calculated using the following formula:

Fig. 18 Coordinates of luminance measurement points

Acceptable performance is listed in the table below for operation in all modes at the specified duty cycle. Table 17

Tests	ш	Nom	UL	Unit	Notes
Maximum variation within each eye	20	-	30	%	Left eye: P1 ~ P9 Right eye: P10 ~ P18
Maximum variation between averages of each eye	-	-	15	%	Left eye: P1 ~ P9 Right eye: P10 ~ P18
Maximum variation between P5 and P14	-	-	15	%	
or [®]					

Note 11-5) Color Non-Uniformity

Test conditions: Use instrument inspection conditions and control ambient light to avoid impact to measurement.

Test method: Use spot measurement device, such as Konica Minolta SR3/ SR-UL1R Display Color Analyzer or equivalent, to measure luminance and color at each point (9 points per eye, total 18 points) which is specified in Figure 18.

The display shall be illuminated using white, red, green, blue primaries. The color (in CIE 1976 u'v' space) of each point shall be measured.

Acceptable performance is listed in the table below for operation in all modes at the specified duty cycle. Table 18

Tests	Display Primaries	u	Nom	UL	Unit	Notes
Maximum color	White 255	-	-	TBD	∆u′v′	Between any 2 rand
variation	Red 255	-	-	TBD	∆u′v′	points
	Green 255	-	-	TBD	Δu'v'	
	Blue 255	-	-	TBD	∆u′v′	
Maximum neighboring color variation	White 255	-	-	TBD	∆u′v′	Between any 2
	Red 255	-		TBD	∆u′v′	neignboring points
	Green 255	-	-0	TBD	∆u′v′	
	Blue 255		7	TBD	∆u′v′	
Maximum color	White 255	- 0	-	TBD	∆u′v′	Between P5 and P14
and P14	Red 255		-	TBD	∆u'v'	points
	Green 255	-	-	TBD	∆u'v'	
	Blue 255	-	-	TBD	∆u'v′	
0150	0					
redi						

SHARP	ŀ
-------	---

Note 11-6) Color Uniformity Throughout Gray Levels

Test conditions: Use instrument inspection conditions and control ambient light. Perform measurement at each Display Center.

Test method: Use spot measurement device, such as Konica Minolta SR3/ SR-UL1R Display Color Analyzer, Radiant Vision Systems i16 or equivalent, to measure luminance and color at each Display Center which is specified in Figure 19.

The color uniformity through gray levels measures the color difference in u'v' space between the white point (when illuminated with a white 255 image) and the color point for all the specified gray levels of the display.

Acceptable performance is listed in the table below for operation in all modes at the specified duty cycle. Table 19

Tests	Display Primaries	LL	Nom	UL	Unit	Notes
	~					
Color Difference to white point	Gray 180	-	-	TBD	∆u′v′	Reference = W255
	Gray 127	-	-	TBD	∆u′v′	
	Gray 90	-	-	TBD	∆u′v′	
	Gray 64	-	-	TBD	∆u′v′	
. 52	Gray 35	-	-	TBD	∆u′v′	
\mathcal{O}_{ℓ}	Gray 25	-	-	TBD	∆u′v′	
\sim	Gray 12	-	-	TBD	∆u′v′	

SHARP	SPEC No. LCP-2619055A	MODEL NO. LS055B3SX04	PAGE 27
Note 11-7) Measuring systems: Konica-Minol • Temperature = 22°C (±3°C), Fra Environment brightness: 150: • Measuring pattern : 1 column in • Measured sample : New sample • Flicker ratio is very sensitive to	ta CA-310 or CA-410 me Frequency = 72Hz, LE ±50 lx nversion e before a long term agin measuring condition.	D back-light: ILED=4.4mA/Duty g.	100%,
Note 11-8) Definition of Crosstalk Test Method: Divide the active area of the measurement, two of the 3x3 sections are i panel using a measurement size less than measurements as shown below.	display into 3x3 section illuminated to display W n half of the minor axi	s and display Black 0 as the ba 255. Measure the brightness a s of the 3x3 center section. (ackground. In each t the center of the Conduct the three
L0 •	L0	L0 •	

Measurement A

Measurement B Fig. 20 Measurement C

Calculate the crosstalk using the following method:

Crosstalk (V) =
$$\left|\frac{L_B - L_A}{L_A}\right| \times 100 (\%)$$

Crosstalk (H) = $\left|\frac{L_C - L_A}{L_A}\right| \times 100 (\%)$

12. Reliability

Tuble	20	
No.	Test item	Conditions
1	High temperature storage test	Ta = +70°C, 240h
2	Low temperature storage test	Ta = -30°C, 240h
3	High temperature operation test	Ta = +55°C, 240h
4	Low temperature operation test	Ta = 0°C, 240h
5	High temperature and high humidity operation test	Ta = +55°C90%RH, 240h (No condensation)
6	Thermal shock, Non-operating	Ta = -30°C (20min) ~ 70°C(20min), 200 cycle
7	Electro static discharge test	Air Discharge: *8 corners and a center, ± 6 kV, C=150pF, R=330 Ω Contact Discharge: *7 corners and a center, ± 4 kV, C=150pF, R=330 Ω

Note 12-1) Ta = Ambient temperature

Note 12-2) Check items for other Test

In the standard condition, there shall be no practical problems that may affect the display function.

SHARP	SPEC No. LCP-2619055A	MODEL No. LS055B3SX04	PAGE 28
13. Indication of lot number			
Attached location is shown in Fig	. 27 Outline dimensions.		
The lot number is shown on a	label. Label Size: 8mm*20mm	(t≦0.1mm)	
	1CMHDLR####YWWD		24.
			0
QR Code			2
Code information : 10	MHDLR####YWWD (15digits)		
		A	
*Detail of S/N			
1 : Format	/ The starting number will be '	"1" to indicate product	
CM : Vendor	/ Fixed value. Code assigned b	WAR/VR	
HDL : Part Code	/ Fixed value. Unique for part	and factory	
R : Revision code	/ FVT = 1. DVT = 2. PVT = 3. M	P = 4	
#### : Serial number (4 digits)	/ 0001~9999		
Y : Digit Year	/ 2019 = 9, 2020 = 0,		
WW : Digit Week	/ Week from "ISO Week Date"	' expressed as decimal represer	ntation (01-53)
D : Digit Day	/ Day from "ISO Week Day"	(1-7)	, , , , , , , , , , , , , , , , , , ,
0 • • 7			
ore display	an		

SHARP	SPEC No. LCP-2619055A	MODEL NO. LS055B3SX04	PAGE 29

14. Forwarding form

(a) Piling number of cartons: 8 deep

(b) Package quality in one cartons: 120 pcs

(c) Carton size: 580mm × 365mm × 235mm

(d) Total mass of 1 carton filled with full modules: TBD

Reliability

(1)Vibration test: 1.047 Grms, Frequency range: 10~55Hz, Stroke: 1.5mm, Sweep: 10Hz~55Hz~10Hz, 1 hr each axis (X/Y/Z) in box

(2) Drop test: 60 cm height, 1 corner, 3 edges, 6 surfaces, 1 time each

691

Condition for storage

Environment

- (1) Temperature: 0 to 40°C
- (2) Humidity: 60%RH or less (at 40°C)
- (3) Atmosphere: Harmful gas, such as acid or alkali which erodes electronic components and/or wires, must not be detected.
- (4) Period: about 3 months

repisplay

(5) Opening of the package: In order to prevent the LCD module from breakdown by electrostatic charges, please control the room humidity over 50%RH and open the package taking sufficient countermeasures against electrostatic charges, such as earth, etc.

