

MODEL NO. : <u>TA068FJWK03-00</u>

ISSUED DATE: <u>2023-02-18</u>

VERSION : Ver 1.0

Preliminary Specification Final Product Specification

Customer :

Approved by	Notes

SHANGHAI TIANMA Confirmed :

Prepared by	Checked by	Approved by
Hui wang		Canhui Chen

This technical specification is subjected to change without notice

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Table of Contents

Table of Contents	2
Record of Revision	
1 General Specifications	4
2 Dimension	5
3 FPC PIN Assignment	6
4 Electrical Specification	6
5 Power On/Off Sequence	10
6 INTERFACE TIMING	12
7 Optical Characteristics	
8 Environmental / Reliability Test.	18
9 Packing Form	19
10 Precautions For Use of OLED Modules	21

TA068FJWK03-00

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2023-02-18	Preliminary Product Specification	Hui Wang
	$\langle \rangle$		

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

1 General Specifications

Item	Specification	Unit
Substrate Thickness	0.15(TPF)+0.0412(panel)+0.088(B P)+0.06(BP 保护膜)	mm
Panel Outline Dimension	72.6768*166.574	mm
Size	6.78	Inch
Active Area	70.6968*157.104	mm
Resolution	1080*2400	pixel
Pixel Size	65.46*65.46	um
Pixel Configuration	Windmill	
Viewing Direction	ALL	o'clock
Pixel Driving Element	LTPS	1
Suggested driver IC(LCD)	NT37705	
Display Mode	OLED	
Technology Type	ТРОТ	

- Note 1: Viewing direction for best image quality is different from TFT definition; there is a 180 degree shift.
- Note 2: Requirements on Environmental Protection: RoHS+HF

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

2 Dimension

2.1 Outline Dimension

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

3 FPC PIN Assignment

3.1 COP Pin Definition (NT37705)

4 Electrical Specification

(DDIC 若为 NT37705,数据仅供参考)

4.1 DC characteristics

	ltom		Symbol	Condition	Specification			
	itern		Symbol		Min.	Тур.	Max.	Onit
	Analog Vo	oltage	VCI	Operation Voltage	2.8	3.0	3.2	V
	Logic Vol	ltage	VDDI	I/O supply voltage	1.7	1.8	1.9	V
	Digital vo	ltage	DVDDP	Operation Voltage	1.2	1.2	1.4	V
Supply Volta (Display)	ge Source Vo	oltage	VLIN (AVDD)	\searrow	7.2	7.2	7.6	V
	OLED pos voltag	sitive je	ELVDD	500nit White	4.5	4.6	4.7	V
	OLED neg voltag	gative je	ELVSS	500nit White	-2.8	-2.5	-2.2	V
Supply Volta	ge Analog Vo	oltage	TP_AVDD	Operation Voltage	2.8	3.0	3.6	V
(TSP)	Logic Vol	Itage	TP_DVDD	Operation Voltage	1.7	1.8	1.98	V

Note1: VDDI's current will be increase when DVDD's voltage is drop to 1.0V in DDIC, and DVDD' s current would be decrease at the same time.so we define the max current as the sum of VDDI and DVDD.

Note2:The value of supply voltage is on BTB side.

TA068FJWK03-00

4.2 MIPI Interface Characteristics

MIPI low-power characteristics

and the second second	A ALLA	A second second	5	pecificatio	m	11110
Parameter	Symbol	Conditions	MIN	TYP	MAX	UNIT
Logic high level input. voltage	VHERCE	LP-CD	450	*	1350	mV
Logic low level input voltage	Villeon	1P-CD	٥		200	mV
Logic high level input voltage	VIERRE	LP-RX (CLK, D0, D1)	880		1350	mV
Logic low level input voltage	VILLAPION	LP-RX (CLK, D0, D1)	ø	in	550	mΨ
Logic low level input voltage	Villemule	LP-RX (CLK ULP mode)	0	177	300	mΨ
Logic high level output voltage	VOILPTX	LP-TX (D0)	FRA	Ð.ª	1.3	v
Logic low level output voltage	Valleta	LP-TX (D0)	-50	NG	50	mV
Logic high level input. current	fin	LP-CD_LP-RX	A AK	Sta	10	Aμ
Logic low level input current	atel	LP-CD LP-RX	-10	1.		μA
Input pulse rejection	SGD	DSI2-CLK+/- DSI2-Dn+/- (Note a)			300	Vps

Note 1| VDDI=1.65-1.95V, DVSS=AVSS_DC=VSSB=VG_HSSI=0V, Ta=-30 to 70 °C (to +85 °C no damage). Note 2| DSI2 high speed is off.

Note 3) Peak interference amplitude max. 200mly and interference frequency min. 450MHz

MIPI high-speed characteristics

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

TA068FJWK03-00

			17 1000	01011100	00		
Burlin Mar			S	pecificatio	n	11117	
Parameter	Symbol	Conditions	MIN	TYP	MAX	UNIC	
Input voltage common mode range	Voncus Vondata	DSI2-CLK+/-, DSI2-Dn+/- (Note2, 3)	70		330	mV	
Input voltage common mode variation (≤ 450MHz)	Vомяська Vомяралии	DSI2-CLK+/-, DSI2-Dn+(- (Note 4)	-50		50	mV	
Input voltage common mode variation (≥ 450MHz)	Vomröätam Vomröätam	DSI2-CLK+/-, DSI2-Dn+/-	x	E.	100	mV	
Low-level differential input voltage threshold	VTHEOATA	DSI2-CLK+/-, DSI2-Dn+/-	-70	Jie-	Bill	m٧	
High-level differential input voltage threshold	Vinecus: Vinecusté	DSI2-CLK+/- DSI2-Dn+/-	1 Ale	117	70	mV	
Single-ended input low voltage	Vuis	DSI2-CLK+/-, DSI2-Dn+/- (Note 3)	40	1	1.3	mV	
Single-ended input high voltage	Views	DSI2-CLK+/- DSI2-Dn+/- (Note 3)	NE	1E	460	mV	
Differential input termination resistor	Rтеяы	DSI2-CLK+4+ DSI2-Dn+4+	80	100	125	Ω	
Single-ended threshold voltage for termination enable	Viesdol	0512-CLK+/-, DSI2-Dn+/-	•	*	450	mV	
Termination capacitor	Стемия	DSI2-CLK+/- DSI2-On+/-		~	14	DF	

Note 11 VDDI=1.65-1.95V, DVSS=AVSS=AVSS_DC=VSSB=VG_HSSI=0V, Ta=-30 to 70 ℃ (to +85 ℃ no damage).

Note 2) includes 50mV (-50mV to 50mV) ground difference.

Note 3) Without Vouscuss / Vouscutus

Note 4) Without 50mV (-50mV to 50mV) ground difference.

Note 5) Dn=D0, D1, D2 and D3.

TA068FJWK03-00

4.3 Reset Input Timing

Figure MIPI reset Timing

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
1.1	BRESW	Reset "L" pulse width (Note 1)	30		71 17	Jus (
DECV			11.0	10	10	ma	When reset applied during Sleep In Mode
RESK	bear .	Reset complete time (Note 2)	Ac	De	120	ms	When reset applied during Sleep Out Mode and Note 4

Note 1) Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

	DECK C IN	1000
- 6	RESICHUISE	Action
1	Shorter than 5µs	Reset Rejected
1	Longer than 30µs	Reset
2	Between 5µs and 30µs	Reset Start

Note 2) During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out -mode. The display remains the blank state in Sleep In-mode) and then return to Default condition for H/W reset.

Note 3) During Reset Complete Time, values in OTP memory will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (t_{mexit}) within 5ms after a rising edge of RESX.

Table Data to Clock Timing Spectifications

Note 4) It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec

1.44

5 Power On/Off Sequence

Power on sequence(4 Power)

Power off sequence

Symbol Min.	_	Value	Value		Value		Unit	Remark
	Min.	Тур.	Max.	Unit	Remark			
ton1	0		4	ms				
ton2	0	-		ms	11 .			
t1	10			ms	- 1/1 00			
t2	20	· · ·		ms	1951 2012			
t3	0	10 - H	t1	ms	an I have			
14	30			μs	allalla a			
t5	120		· · ·	ms	- ALCHICOU			

TA068FJWK03-00

4 Input Power with independent DVDDP (EXT_DVDD_EN = "0")

VDDI=1.65~1.95V, DVDDP=1.2~1.95V, VCI=2.65~4.5V, AVDD_DC=AVDDB=AVDD=5.0~8.0V

C. mbal		Value		1100	Description			
Symbol	Min.	Typ.	Max.	Unit	Remark			
lof1	0			ms				
tof2	0	-	-	ms				
t12	0			ms				
t13	0			ms				
t14		100	-	ms				

144

6 INTERFACE TIMING

6.1 High-Speed mode

Figure High Speed timming

(DVSS=AVSS=AVSS_DC=VSSB=VG_HSSI=0V, VDDI=1.65V to 1.95V, Ta=-30 to 70°C).

Signal	Symbol	Paramater	MUN	TYP	MAX	Unit	Description
DSI2-CLK+/-	2xUInst	Double Ul instantaneous	1.334	1	4	ns.	4 Lane (Note 2)
DSI2-CLK+/-	UINSTA	UI instantaneous halts (UI = UIwers = UIwera)	D.667		2	ns.	4 Lane (Note 2)
DEID Deil		Data to clock setup time	0.15xUI		- ¥	ps	Note 1_3
0312-01171-	105		0.2xUI			ps	Note 1.4
PRIO Paul	10H	Data to clock hold time	0.15xUI			- pa	Note 1.3
USI2-Un+/-			0.2xLIF	-		DS.	Note T, 4
2012 01 11-1		Differential rise time for clock			0.3x0	ps	Note 1, 5
DEP Det	LONTCLS.		· · · · · · · · · · · · · · · · · · ·	-	0.35xUI	-ps	Note 1, 6
0312-011+1-	-		100	10	all and	ps .	Note 1.7

Note 1) Dn = D0, D1, D2 and D3.

Note 2) Maximum total bit rate is 1.5 Gbps

Note 3) Total setup and hole window for receiver of 0.31 UIINST when D-PHY is supporting maximum data rate = 1Gbps.

Note 4) Total setup and hole window for receiver of 0 4* UIINST when D-PHY is supporting maximum data rate > 1Gbps.

Note 5) Applicable when operating at HS bit rates ≤ 1 Sops (UI ≥ 1 ns). Note 6) Applicable when operating at HS bit rates > 1 Sops (UI ≤ 1 ns).

Note 7) Applicable for all HS by rates. However, to avoid excessive radiation, bit rates ≤ 1 Gbps (UI ≥ 1 ns), should not use values below 150 ps.

High Speed mode Table

1.44

6.2 Low-Power Receiver

Input Glitch Rejection of Low Power Receivers as follow.

Low-Power timing

Figure

IDVSS=AVSS=AVSS	DC=VSSB=VG	HSSI=NV	VDDI=1.65V In	1 95V	Ta=-30 to 70°C)
10100-11000-11000	_00-0000-00	11001-04	1001-1.001 10	1.30.4	10-00101004

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
DSI2-D0+/-	TLENA	Length of LP-00, LP-01, LP- 10 or LP-11 periods MPLI → Display Module	50	13	75	ns	Input
DSI2-D0+/-	TLEXD	Length of LP-00, LP-01, LP- 10 or LP-11 periods Display Module → MPU	50	2	75	'ns	Output
DSI2-D0+/-	Tresured	Time-out before the MPU start driving	Turad	1.2.1	2xTLeve	ns	Output
DS12-D0+/-	TTA-GETD.	Time to drive LP-00 by display module	-R.	5xTLExa		ns.	Input
DS12-D0+/-	THAGOD	Time to drive LP-00 after turnaround request - MPU		4xTLExa	AS	ns	Output

Figure Low-Power mode

7 Optical Characteristics

Item		Symbol	Condition	Min	Тур	Max	Unit	Remark
Contrast Ratio		CR	θ=0°	80000	-	-	-	Note1 Note2 <mark>TM module</mark> for reference
Response Time		T _{on} T _{off}	25 ℃	-	-	1	ms	Note1 Note3 TM module for reference
	Ded	х		0.651	0.681	0.711	-	
	Red	у		0.289	0.319	0.349		Note1
Chromoticity	Green	х	-	0.204	0.244	0.284		Note4
Chromaticity		у		0.679	0.719	0.759		TM module
	Blue	х		0.109	0.139	0.169		tor reference
		У		0.014	0.044	0.074		
Uniformity(9 point)		U		75	<u>></u>	-	%	Note1 Note5 <mark>TM module</mark> for reference
Crosstalk		Ct	-	-	-	2	%	Note6 <mark>TM module</mark> for reference
NTSC(CIE1931)		-		85	-	-	%	Note4 TM module for reference

Test Conditions:

- 1. The ambient temperature is 25° C.
- 2. The test systems refer to Note 1 and Note 2.

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the OLED screen. All input terminals OLED panel must be ground when measuring the center area of the panel.

Fig. 1 Optical measurement system

Note 2: Definition of contrast ratio

Contrast ratio(CR)= Luminnace measured when OLED is on the "White" state Luminnace measured when OLED is on the "Black" state

"White state ": The state is that the OLED should be driven by Vwhite.

"Black state": The state is that the OLED should be driven by Vblack.

Note 3: Definition of Response time

The response time is defined as the OLED optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is the time between photo detector output intensity changed from 10%

to 90%.

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Note 4: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of OLED.

Note 5: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 3). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity(U) = Lmin/ Lmax

L-----Active area length W----- Active area width

Fig. 2 Definition of uniformity

Lmax: The measured maximum luminance of all measurement position.

Lmin: The measured minimum luminance of all measurement position.

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Note 6: Definition of Crosstalk :

- There should be no visible cross-talk in normal direction of the display when the two "Cross-talk Test Patterns " below are loaded.
- Measurement equipment: CS2000 or similar equipments
- The point should be marked is, the background of Cross-talk Test Pattern-"gray " are defined as middle gray scale . For example, RGB 24bit "gray" defined as below:

- Test pattern follow below picture, the background is middle gray and with two black rectangle parts, each one is 1/9 of the AA size.
- Calculate the crosstalk(V) and crosstalk(H) with the test formula below:

• Then use the max value between Crosstalk(V) and Crosstalk(H) as the final crosstalk.

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

8 Environmental / Reliability Test

No	Test Item	Condition	Remark
1	High Temperature Operation	Ts=+70℃, 120hrs	Note1
2	Low Temperature Operation	Ta=-30℃,120hrs	4
3	High Temperature Storage	Ta=+80℃ · 120hrs	
4	Low Temperature Storage	Ta=-40℃, 120hrs	
5	High Temperature & High Humidity Storage	Ta=+60℃, 90% RH 120 hours	Note2
6	Thermal Shock (Non-operation)	-40℃ 30 min~+80℃ 30 min, Change time:3min, 30Cycles	Start with cold temperature, End with high temperature,
7	Vibration (Non-operation)	Frequency range:10~55Hz, Stroke:1.5mm Sweep:10Hz~55Hz~10Hz 2 hours for each direction of X.Y.Z. (6 hours for total)(Package condition)	
8	Package Drop Test	Height:80 cm,(When Package weight 10≤M<20 Kg) 1 corner, 3 edges, 6 surfaces	

Note1: Ts is the temperature of panel's surface.

Note2: Ta is the ambient temperature of sample.

Note3: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

Note 4: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.

9 Packing Form

Packing Specifications

ltem	Specification	Remark
Carton(Box) Packing	108pcs	
Carton(Box) Packing Size	544×365×250mm	
Carton(Box) Packing Weight	TBD	For Reference
Pallet Packing	3240 pcs	
Pallet Packing Size	1100x1100x130mm	
Pallet Packing Weight	TBD	For Reference

Stack:

纸箱堆叠数按 2*3/每层*共 5 层, 栈板尺寸 1100mm*1100mm*130mm, 如图所示:

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

10 Precautions For Use of OLED Modules

10.1 Handling Precautions

10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.

10.1.2 If the display panel is damaged and the Organic Light-Emitting Diode inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.

10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.

10.1.4 The polarizer covering the display surface of the OLED module is soft and easily scratched. Handle this polarizer carefully.

10.1.5 If the display surface is contaMinated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:

- Isopropyl alcohol
- Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
 - Ketone
- Aromatic solvents

10.1.6 Do not attempt to disassemble the OLED Module.

10.1.7 If the logic circuit power is off, do not apply the input signals.

10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.

- **10.1.8.1** Be sure to ground the body when handling the OLED Modules.
- **10.1.8.2** Tools required for assembly, such as soldering irons, must be properly ground.
- **10.1.8.3** To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- **10.1.8.3** The OLED Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

10.2 Storage precautions

10.2.1 When storing the OLED modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.

10.2.2 The OLED modules should be stored under the storage temperature range. If the OLED modules will be stored for a long time, the recommend condition is:

Temperature : 0° C $\sim 40^{\circ}$ C Relatively humidity: $\leq 80^{\circ}$

10.3 The OLED modules should be stored in the room without acid, alkali and harmful gas.

10.3.1 Transportation Precautions

10.3.2 The OLED modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.